

Announcements

Hw1 solutions posted on Canvas

Hw2 is available on Gradescope (one coding question and 2 written question) **Due Friday Feb 6 only one late day.**

Sections **attendance mandatory, will include a 10 min quiz** about previous hw.

Prelim 1: Thursday, Feb 12. fill out this [form](#), if you have a conflict.

Covers hw1-2, sections week 1-2, lectures through this week. Section next week is review. *this week dynamic programming practice*

Other prelim info and practice questions will be posted shortly

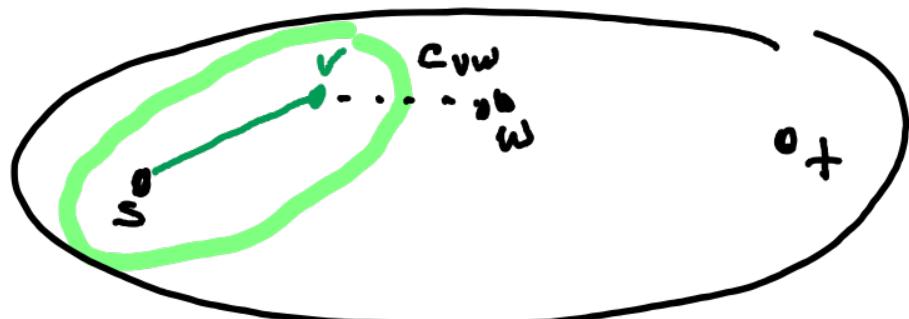
Min-cost path: recall Dijkstra (sec 4.4)

costs are ≥ 0

also in CS 2110/12

graph (V, E) cost c_{vw} for $(v, w) \in E$

Problem find min-cost $s \rightarrow t$ path



similar to Prim

select min cost out of s

(s, v) = min cost path to v

compute $dist(s \rightarrow v)$ all other $v \in V$

Dijkstra

$dist(s) = 0$

$S = \{s\}$
nodes reached

while $t \notin S$

select $w \notin S$ min

min $dist(u) + c_{uw}$

set $dist(w) = dist(u) + c_{uw}$

add w to S

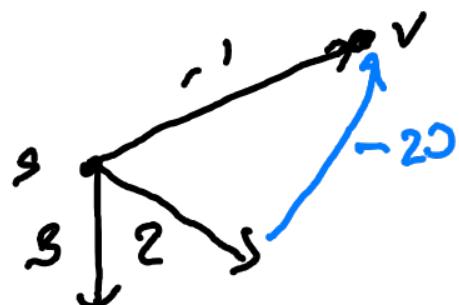
endwhile

Min cost path with negative costs (sec 6.8)

assume no negative cycles

Does Dijkstra work OK?

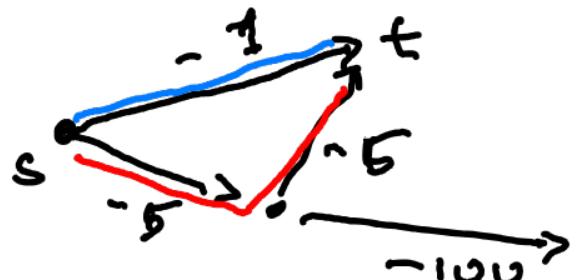
①



not working

②

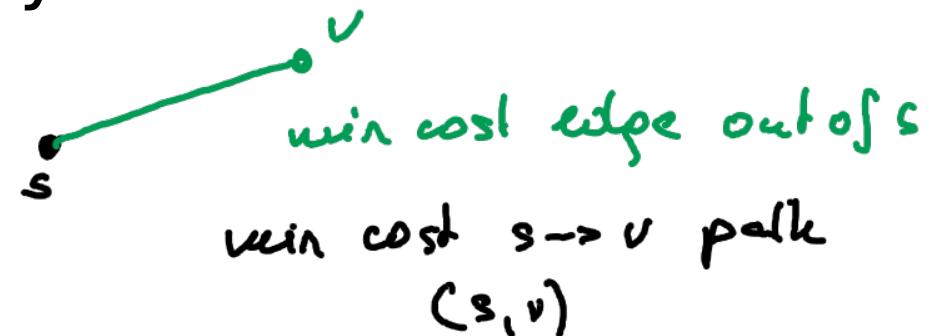
natural idea: add M to all costs; run Dijkstra $c_{vw} + M$



run cost (s, t) cost - 1

with $c_{vw} + M$ red wins

We will compute run cost $s \rightarrow v$ for all nodes v



Dynamic Programming III: Min-cost path

assume no negative cycles promise

Subproblems?

version 1: min cost using only nodes $\{1, \dots, i\}$ in path

version 2: min cost using $\leq i$ edges

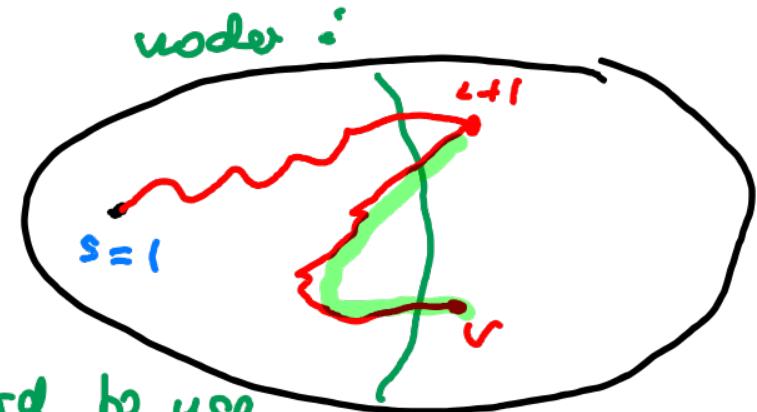
today by version 2.

base $i=0 \text{ or } 1$

$$\text{Opt}(i, v) = \begin{cases} c_{s,v} & (s, v) \in E \text{ & } v \neq s \\ +\infty & (s, v) \notin E \text{ & } v \neq s \\ 0 & v = s \end{cases}$$

due to promise of no neg. cycles

this is hard to use



$\text{Opt}(i, v) = \text{min cost of } s \rightarrow v \text{ path}$
using $\leq i$ edges

Bellman-Ford algorithm

The dynamic program

$$Opt(0, v) = \begin{cases} +\infty & v \neq s \\ 0 & v = s \end{cases}$$

For $i = 1, 2, \dots, |V|-1$

For all $v \in V$

$$Opt(i, v) = \min_{\substack{\text{using } \leq i \\ \text{edges}}} (Opt(i-1, v),$$

$Opt(i, v) = \min \text{ cost path } s \rightarrow v$
using $\leq i$ edges

$Opt(i-1, v)$ computed

$$\min_{\substack{w, (w, v) \in E \\ \text{using } \leq i \\ \text{edges}}} (Opt(i-1, w) + c_{wv})$$

end for

end for

return $Opt(|V|-1, +)$

How many edges can be in a path $s \rightarrow t$

$$\leq |V|-1$$

Join by Web PollEv.com/evatardos772

What is the running time of the Bellman-Ford Algorithm on a graph with n nodes and m edges?

- A. $O(n + m)$
- B. $O(n^2)$
- ✓ C. $O(nm)$

$$\text{Opt}(0, v) = \begin{cases} 0 & v = s \\ \infty & \text{else} \end{cases}$$

- For $i = 1 \dots, n-1$

- For $v \in V$

- * $\text{Opt}(i, v) = \min (\text{Opt}(i-1, v), \min_{w: (v, w) \in E} \text{Opt}(i-1, w) + c_{vw})$

inner loop $\sum_v O(\deg(v)) = O(m)$

updating old $\text{deg}(v)$

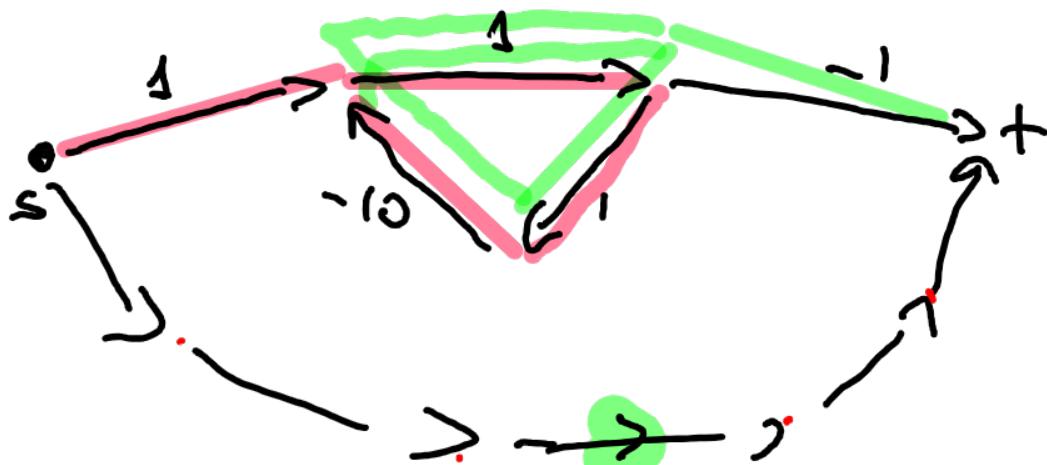
- D. $O(m^2)$
- ✓ E. $O(n^3)$

- F. Slower than any of these bounds

• outside for loop i
• inside for loop v
computing Opt
max $u-1$ if
 v has many
incoming edges

What happens if G has negative cycle?

see section this week: must but verify



Alg finds

path using ≤ 8 edges

no min cost = $-\infty$

Note: min cost **simple** path
= no repeat nodes
computationally hard